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Abstract: The forensic analysis of digital images from mobile devices is particularly important given their quick expansion
and everyday use in the society. A further consequence of digital images’ widespread use is that they are used today as
silent witnesses in legal proceedings, as crucial evidence of the crime. This study specifically addresses the description of
a technique that allows the identification of the image source acquisition, for the specific case of mobile devices images.
This approach is to extract wavelet-based features from sensor pattern noise which are then classified using a support
vector machine. Moreover, there are a number of parameters that allows the authors to adapt the execution of the
algorithm to specific situations desired for the forensic analyst (a variety of types and sizes of image or optimising the
average accuracy rate in terms of processing time). This article describes a set of experiments with the same set of
images that can obtain general conclusions for the different configurations.
1 Introduction

Owing to increasing storage capacity, usability, portability and
affordability, camera-enabled mobile phones have become
ubiquitous consumer electronic devices. The development of
digital technologies has been advancing and continues to do so at
an unstoppable rate. Every day the number of digital cameras is
growing as well as the ease of access to them. Mobile digital
cameras deserve special attention. According to Gartner [1], 1.745
billion handsets were sold in 2012 and it is predicted that 1.9
billion handsets will be sold in 2013. In total, according to
estimates by the International Communication Union, there are 6.8
billion mobile phone subscriptions worldwide, which is a large
increase from the 6 billion subscriptions in 2012 and 5.8 billion in
2011.

83% of these mobile devices have an integrated digital camera,
which in contrast to conventional digital cameras are carried by
their owners all the time to most places they attend and, in many
cases, these devices have internet access [2]. The quality of these
cameras has increased so much that many people use them as a
replacement for digital still cameras (DSCs). In 2012, 31% of
digital cameras sold belong to mobile phones, PCs and tablets and
the forecast for 2016 according to [3] is to increase to 48%. In
2013 only 27% of market share will be from DSCs. There are also
predictions that DSCs will disappear in favour of new integrated
mobile device cameras [4], because the improved quality of these
devices is growing at an unstoppable rate.

Having described this overview in figures on the extent of the
presence of mobile devices in the world, we must not overlook the
emergence in today’s society of such devices in our day to day
life. So much so, that according to Ahonen et al., [2], a large
number of people have and use more than one mobile device and
a typical user turns to their mobile devices an average of 150
times a day.

The extensive use of smartphone cameras makes enforcing legal
restrictions on the capture and sharing of digital photographs very
difficult. Restrictions on the use of cameras include locations such
as schools, government offices and businesses. Consequently, tools
which permit the identification of source devices have significant
utility in various areas of law enforcement [5] such as child
protection or digital rights management.

Often the pictures are considered to be real events
captured by digital cameras. However, with the development of
technology, powerful and sophisticated tools have emerged that
facilitate the alteration of digital images in an impressive manner,
even for those without technical knowledge or expertise in the
area [6].

For these reasons, nowadays, digital image forensic analysis of
mobile devices is very important. The study should be specific to
mobile device images, because they have specific characteristics
that allow for better results, not as valid digital image forensic
techniques but for other kind of devices.
2 Image acquisition process in a digital camera

The first step to understanding and creating image forensic
algorithms is to know in detail the image acquisition process in
digital cameras. This process is summarised in Fig. 1.

Although many details of the camera pipeline belong to each
manufacturer, the general structure is the same in all of them.
Below is a brief description of each image acquisition phase.

When capturing an image, it is necessary to measure three or more
bands for each pixel, which requires more than one sensor, and
consequently it increases the cost of the camera. The most
widespread and economical solution is the placement of a ‘colour
filter array’ (CFA) in front of the sensor. There may be
mechanisms interacting with the sensor to determine the exposure
(aperture size, shutter speed and automatic gain control) and the
focal length of the lens.

An antialiasing filter is also placed before the sensor; this filter is
in charge of cleaning the signal prior to the analogue to digital
conversion. This filter generates smoother contours in the image,
reducing the unpleasant staggered appearance of lines.
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Fig. 1 Image acquisition process in a digital camera
The sensor (charge coupled device (CCD) or complementary
metal oxide semiconductor) records the image converting light
energy into electrical energy. The raw data obtained from the
sensor needs to be processed to remove noise and other artefacts
(anomalies introduced into digital signals). One of these processes
is the correction of defective pixels caused by imperfections in the
sensor, which corrects these pixels by interpolation. Another
process is the white balance that allows for a more accurate colour
reproduction without dominant colours; this effect is especially
noticeable in neutral colours such as white. Demosaicing is the
most complex process from the computational point of view and
the techniques used are often owned by the camera manufacturer.
This algorithm uses the values of the neighbouring pixels to
calculate the values of the channels that have not been measured
(remember that each pixel sensor detects only the channel that the
array CFA allows to pass).

Another process to which the image is subjected is called gamma
correction, which adjusts the intensity values of the image.
Although these algorithms are in the pipeline from any camera,
the exact process may vary from one manufacturer to another,
and even from one camera model to another. Finally the image is
compressed (mobile phone cameras typically use the algorithm
joint photographic experts group (JPEG)) to save space. The
compressed image is stored in the device memory with the image
information in EXIF [7].

In [8] the image acquisition process in cameras of mobile devices
is described, likewise a comparison of this process compared with
that in DSCs and scanners is presented.
3 Source camera identification techniques

Research in this field studies the design of techniques to identify
maker and model of the devices used to generate digital images.
Analogously to ballistic analysis trying to relate a gun with its
bullets, digital image forensics tries to identify the link between
images and the digital camera which has generated them [9]. The
success of these techniques depends on the assumption that the
characteristics are unique to each device. The characteristics used
to identify the maker and the model of digital cameras are derived
from the differences between image processing techniques and
technologies used in camera components [10]. The main problem
with this approach is that different models of digital camera are
often built using the same core components that originate from a
small number of manufacturers. As a consequence it can be
difficult, or in some cases impossible, to differentiate between
models using such methods.

According to Van Lanh et al. [10], for this purpose four groups of
techniques can be established depending on their base: lens system
aberrations, CFA interpolation, image characteristics and sensor
imperfections. The latter is the subject of this paper. In addition to
the above there is another group of techniques based on metadata.

Metadata techniques are the simplest and there is plenty of
research based on them. However, these techniques are highly
dependent on the metadata that manufacturers decide to insert
when generating images. Moreover, this method is the most
vulnerable to malicious modifications or even the total elimination
of metadata either intentionally or unwittingly.
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During the image generation process the lens system can introduce
some aberrations (spherical, coma, astigmatism, field curvature,
radial distortion and chromatic aberration). The radial distortion is
the one with the most impact over pictures, especially in cameras
having cheap wide angle lenses. Most digital cameras use this type
of lens for cost reasons. In [11] the lens radial distortion is
proposed as the best technique for source identification. Radial
distortion causes straight lines to appear as curves in images. The
radial distortion degree of each image can be measured by a
process consisting of three steps: edge detection, distorted segment
extraction, and distortion error measurement. Choi experimented
with three different cameras and obtained 91.28% accuracy
identifying the camera source.

Some authors consider that CFA choice and the interpolation
algorithm specifications generate some of the most striking
differences between different camera models.

In [12] an algorithm for identifying and classifying colour
interpolation operations is presented. This proposal is based on
two methods to perform the classification process: first using an
algorithm to analyse the correlation of each pixel value with its
neighbours’ values, and secondly an analysis of the differences
between pixels independently. The accuracy for the source camera
identification with images from four to five different models were
of 88% and 84.8%, respectively.

In [13] correlations between pixels are used for the source
identification, obtaining a coefficient matrix for each colour
channel while defining a pixel quadratic correlation model. Neutral
networks are used for classification. The method was tested with
cartoon images from four cameras. The success rate obtained was
98.6%. This approach is not efficient at differentiating between
different models from the same maker.

In [14] a set of binary similarity measures is used as metrics to
estimate the similarity between image bit planes. The fundamental
assumption of this work is that CFA interpolation algorithms from
each maker leave correlations along image bit planes and can be
represented by a set of 108 binary similarity measures for
classification. The success rate of their experiments was between
81 and 98% to classify three cameras and decreased to 62% to
identify between nine cameras.

The techniques based on image features use a set of features
extracted from image content to identify the source. These features
are divided into three groups: colour characteristics, image quality
metrics and wavelet domain statistics.

In [8], the authors extend the source identification to different
devices such as mobiles, phones, digital cameras, scanners and
computers. In this proposal, colour interpolation coefficients and
noise characteristics are used to classify. Their experiments showed
an overall result of 93.75% accuracy. Identifying the maker and
model of five mobile phone models, the accuracy obtained was 97.7%.

In [15], a method based on the bi-coherence statistics phases and
magnitudes along with the wavelet coefficients is used for the
identification. This method captures the unique nonlinear
distortions in the wavelet domain produced by the cameras when
performing processing operations over images. As a result an
accuracy of 97% in the identification was obtained in
distinguishing different models from the same manufacturer.

In [16], a technique to differentiate images using the wavelet
family transforms is explained. Ridgelets and contourlets subbands
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statistical models are proposed to extract the representative features
from images. Experiments were conducted to identify three
different cameras obtaining accuracies of 93.3% with
wavelet-based approach, 96.7% using ridgelets, and 99.7% with
contourlets.

In [17], a method using the marginal density discrete cosine
transform (DCT) coefficients in low-frequency coordinates and
neighbouring joint density features on both intra-block and
inter-block from the DCT domain is proposed. In experiments
with images of different scale factors from five smartphone models
of four makers, an accuracy of between 86.36% and 99.91% was
obtained.

The techniques based on sensor noise study the traces left by
sensor defects in images. These techniques are mainly divided into
two branches: pixel defects and sensor pattern noise (SPN). The
first branch studies pixel defects, hot pixels, dead pixels, row or
column defects, and group defects. In the second branch a pattern
is constructed by averaging multiple residual noises computed by
any noise removal filter; The presence of the pattern is determined
using a correlation method or machine classification support vector
machine (SVM).

In [18], pixel defects of CCD sensors are studied, focusing on
different features to analyse images and then identify their source:
CCD sensor defects, the file format used, noise introduced in the
image and watermarking introduced by makers. Among the CCD
sensor defects are considered hot spots, dead pixels, group defects,
and row/column defects. Results indicate that each camera has a
different defect pattern. Nevertheless, it is also noted that the
number of pixel defects for images from the same camera is
different and varies greatly depending in the image content.
Likewise, it was revealed that the number of defects varies with
temperature. Finally, the study found that high quality CCD
cameras do not have this kind of problem. When considering only
defective CCD sensors this study is not applicable to the analysis
of images generated by mobile devices.

In [19], the authors analyse the SPN from a set of cameras, which
functions as a fingerprint allowing the unique identification of each
Fig. 2 Scheme functional
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camera. This pattern noise is obtained by averaging the sensor noise
extracted from different images with a noise removal filter. To
identify the camera from a given image, the reference pattern is
considered as a watermark in the image and its presence is
established by a correlation detector. It was found that this method
is affected by processing algorithms such as image JPEG
compression and gamma correction. The results for pictures with
different sizes were unsatisfactory [10].

In [20], an approach to source camera identification in open set
scenarios is proposed, where unlike closed scenarios it is not
assumed to have access to all the possible image source cameras.
This approach, in contrast to others, considers nine different
regions of interest (ROIs) located in the corners and the centre of
the images (not only the central region of the image). Using these
ROIs, it is possible to work with different resolution images
without requiring zero padding or colour interpolating. The SPN is
computed for each colour channel generating a total of 36
representative features for each image. Then, the features of
images taken by the camera under investigation are labelled as
positive class and features from images made by other cameras as
negative classes. After the SVM training phase, in which the
hyper-plane that separates the positive and negative classes is
estimated, this hyperplane is moved by a given value either inward
(for positive classes) or outward (for negative classes) for the
purpose of considering the open scenario unknown classes. The
results had an accuracy of 94.49, 96.77 and 98.10%.

In [21], the sensor noise is extracted by calculating similarities as a
classification method on the basis of [19]. The authors state that the
sensor noise can be highly contaminated by the scenario details, and
they propose that the stronger a component of the sensor noise is, the
less reliable it is and therefore it should be attenuated. They
performed experiments with six different DSCs. For images of
1536 × 2048 pixels, they obtained an accuracy of 38.5% with the
implementation without the improvement and 80.8% with the
proposed improvement. For images of 512 × 512 pixels, they
obtained an accuracy of 21.8% without improvement and 78.7%
with the proposed improvement.
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A detailed comparison of different source identification
techniques is presented in [22].
Fig. 4 Extracting features
4 Source identification algorithm

Previous work has shown SPN [18, 22, 19] and wavelet transform
[15, 16] to be an effective method for source camera identification.
However, almost all studies have focused only on traditional
cameras, excluding mobile cameras. This makes it an area of study
that requires attention especially with mobile devices. Using a
biometric analogy, we consider each noise pattern to be a
fingerprint of its source camera’s sensor. In our study, SPN is used
to classify images captured by camera-enabled smartphones. Our
approach characterises the fingerprints using wavelet-based feature
vectors. The scheme presented in Fig. 2 shows the functional
diagram of our proposal.

Noise images were obtained using the method previously
described by [19] and also summarised by Fig. 3 as follows.

To extract its noise pattern, an image is decomposed into its red,
green and blue colour channels. Then, a four-level wavelet
decomposition of each colour channel is calculated using the
Daubechies, 8-tap, separable quadrate mirror filters. The number
of decomposition levels can be increased to improve accuracy or
to reduce processing time.

Horizontal H, vertical V and diagonal D high-frequency images
are obtained for each level of decomposition. For each detail
image, the local scene variance in a W ×W window is estimated.
Four estimates are obtained with window sizes corresponding to
W∈ {3, 5, 7, 9}. Finally, we choose the estimate which maximises
the a posteriori probability
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Fig. 3 Extracting PRNU
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where, c(i, j) is the high-frequency component and c∈ {H, V, D}; σ0
controls the degree of noise suppression.

The minimum of four variances is chosen as the best estimate
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2
9(i, j)
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An alternative and less accurate method is to simply useW = 3 as the
estimated local variance.

The denoised wavelet coefficients are defined by the Wiener filter
as follows

cclean i, j
( ) = c(i, j)

ŝ2(i, j)

ŝ2(i, j)+ s2
0

(3)

The noise residual is obtained by calculating the inverse transform
and subtracting the denoised image from the original image. JPEG
and demosaicing artefacts, presented in the noise image, are
suppressed by subtracting the mean column and row values [23].
Greater weight is given to the green channel since the
configuration of the colour matrix this channel contains more
information about the image [24–26].

The next step is to obtain features that characterise the sensor
fingerprint for the purpose of classification. A total of 81 features
(3 channels × 3 wavelet components × 9 central moments) is
extracted using the Fig. 4.

Classification was performed using a SVM with RBF kernel. We
used the LibSVM package in which the SVM is extended to multiple
classes yielding class probability estimates [27]. A grid search was
used to obtain the best kernel parameters (γ and C ). The classifier
was trained and tested with feature vectors extracted from
randomly selected images.
5 Experiments and results

To assess the effectiveness of the proposed algorithms, a set of
experiments have been made with a variety of configuration
parameters. Table 1 summarises the parameters used and their
possible values.

The PRNU extraction algorithm and feature extraction algorithm
are implemented in Python 2.7 and C language. In a Intel Core i7
Q720 1.6 GHz and 8GB of RAM it takes approximately 20 s to
extract the PRNU and compute the features for a 1024 × 1024 crop
of an image anf 5 s for a 512 × 512 crop of an image using
adaptative variance estimation and zero meaning. The same case
with no adaptative variance takes approximately 5 s and 1.5 s for
1024 × 1024 and 512 × 512 crops, respectively. Training the SVM
classifier and testing for 600 images is realised in one minute and
a fraction of a second, respectively. A random sample of 100
images was used for training and a different random sample of
IET Comput. Vis., 2015, Vol. 9, Iss. 5, pp. 723–731
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Table 2 Configurations used in mobile device digital cameras

Brand Model Resolution Taking
Conditions

Apple iPhone 3G (A1) 2 MP (1600 × 1200) scene type: any
orientation:
vertical

flash: disabled
light: natural
white balance:

auto
digital zoom

ratio: 0
exposure time: 0

seg
ISO speed:
automatic

iPhone 4S (A2) 8 MP (3264 × 2448)
iPhone 3 (A3) 2 MP (1600 × 1200)
iPhone 5 (A4) 8 MP (3264 × 2448)

Black Berry 8520 (B1) 2 MP (1600 × 1200)
Sony
Ericsson

UST25a (SE1) 5 MP (2592 × 1944)
U5I (SE2) 8 MP (3264 × 2448)

Samsung GT-I9100 (S1) 8 MP (3264 × 2448)
GT-S5830 (S2) 5 MP (2592 × 1944)
GT-S5830M (S3) 5 MP (2592 × 1944)
EK-GC101 (S4) 16.3 MP (4608 × 3456)

LG E400 (L1) 3.2 MP (2048 × 1536)
P760 (L2) 5 MP (2592 × 1944)

HTC Desire HD (H1) 8 MP (3264 × 2448)
Desire (H2) 5 MP (2592 × 1944)

Nokia E61I (N1) 2 MP (1600 × 1200)
800-Lumia (N2) 8 MP (3264 × 2448)

Zopo ZP979 (Z1) 12.6 MP (4096 × 3072)

Table 1 Parameters used in the proposed algorithm and its possible
values

Parameter Possible values

number of training photos
by camera

100

number of testing photos
by camera

100

image crop centre: 1024 × 1024 or 512 × 512
variance estimation adaptative (steps 7 and 8 of Fig. 4) or

non-adaptive (step 9 of Fig. 4)
zero-meaning ysed or not used (step 13 of Fig. 4)
100 images was used for testing. However, we used EOLO the HPC
of Climate Change of the International Campus of Excellence of
Moncloa for computing.

The first experiment of [28] shows that the performance changed
only slightly in different experiment runs, which indicates stability
over different training and testing image sets.

In experiments 1 to 8 we used the same number of phones and the
same brands and models. This allows us to perform a comparative
study and to obtain conclusions about what parameters can be
favourable or optimal in different situations.

All the mobile devices used are shown in Table 2.
Table 3 Parameter configuration of experiments

Experiment Resolution Number of devices Mult

test 1 1024 × 1024 6
test 2 1024 × 1024 6
test 3 1024 × 1024 6
test 4 1024 × 1024 6
test 5 512 × 512 6
test 6 512 × 512 6
test 7 512 × 512 6
test 8 512 × 512 6
test 9 1024 × 1024 14

Table 4 Experiment 1

Camera Apple iPhone 5 Samsung EK-GC101 Nok

Apple iPhone 5 96 0
Samsung EK-GC101 5 88
Nokia 800-Lumia 0 0
Zopo ZP979 0 0
LG P760 0 0
Sony Ericsson ST25A 0 0
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Once they have been presented with configuration parameters and
cameras, the experiments with their corresponding parameters are
shown in Table 3.
5.1 Experiment 1

The parameters chosen for this experiment are: crop centre 1024 ×
1024, variance estimation adaptative and zero meaning.

The confusion table from six cameras is showed in Table 4. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 96.33%.
5.2 Experiment 2

The parameters chosen for this experiment are: crop centre 1024 ×
1024, variance estimation adaptative and no zero-meaning. That is,
the same parameters as in Experiment 1, except that in this
experiment the zero-meaning does not apply. Given that the
images used for all experiments are the same we will be able to
check the impact of this change to the results.

The confusion table from six cameras is showed in Table 5. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 98%.

It is noted that the zero-meaning gets worse the average accuracy
rate (1.67% from Experiment 1), although the difference is not very
significant to obtain definitive conclusions. It can also be noted that
except for the model LG P760 (passing from 100 to 99%) the rest of
the mobile devices increases the hit rate.
5.3 Experiment 3

The parameters chosen for this experiment are: crop centre 1024 ×
1024, variance estimation non-adaptative and zero-meaning. That
is, the same parameters as in Experiment 1, except that in this
experiment the variance estimation adaptative does not apply.
Among others, the main objective of this experiment is to check if
the chosen type of variance estimation is determinant in the results
of the algorithm. It is also important to note that the use of
adaptive or non-adaptive variance has important effects on the
execution time of the algorithm, because algorithm execution time
with non-adaptative variance is approximately four times faster.

The confusion table from six cameras is showed in Table 6. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 97.5%. At first it was expected that
non-adaptive variance estimation would produce worse results, but
iple neighbour Zero mean required Average accuracy

t t 96.33
t f 98
f t 97.5
f f 97.83
t t 73.76
t f 93.17
f t 92.5
f f 91.67
f f 87.21

ia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

2 0 2 0
2 2 3 0

100 0 0 0
2 98 0 0
0 0 100 0
3 0 1 96
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Table 6 Experiment 3

Camera Apple iPhone 5 Samsung EK-GC101 Nokia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

Apple iPhone 5 95 0 2 0 3 0
Samsung EK-GC101 1 95 0 3 1 0
Nokia 800-Lumia 0 0 100 0 0 0
Zopo ZP979 0 1 1 98 0 0
LG P760 0 1 0 0 99 1
Sony Ericsson ST25A 0 0 1 0 1 98

Table 5 Experiment 2

Camera Apple iPhone 5 Samsung EK-GC101 Nokia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

Apple iPhone 5 97 0 1 0 2 0
Samsung EK-GC101 1 95 0 3 1 0
Nokia 800-Lumia 0 0 100 0 0 0
Zopo ZP979 0 0 2 98 0 0
LG P760 0 0 0 0 99 1
Sony Ericsson ST25A 0 0 0 0 1 99
it is observed that the results of the above experiments do not differ
by far.
5.4 Experiment 4

The parameters chosen for this experiment are: crop centre 1024 ×
1024, non-adaptive variance estimation and no zero-meaning. That
is, the same parameters as in Experiment 2, except that in this
experiment we apply the non-adaptive variance estimation. Similar
to the previous experiment one of the objectives of this experiment
is to check if the chosen type of variance estimation has effects in
the results. Besides we can watch the behaviour of zero-meaning
for non-adaptive variance estimation.

The confusion table from six cameras is showed in Table 7. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 9783%.

In contrast to what occurs between Experiments 1 and 3, in this
experiment a small worsening on the average accuracy rate of
Experiment 2 is observed. Therefore, it can be concluded that in
the case of 1024 × 1024 crop using adaptive variance estimation
does not improves significantly the results, because the results are
almost the same with minor improvements or deteriorations.
Moreover it is observed that the use of zero-meaning with
non-adaptive variance estimation does not significantly improve
the results.
Table 8 Experiment 5

Camera Apple iPhone 5 Samsung EK-GC101 Nok

Apple iPhone 5 93 3
Samsung EK-GC101 16 76
Nokia 800-Lumia 0 0
Zopo ZP979 0 19
LG P760 2 0
Sony Ericsson ST25A 0 0

Table 7 Experiment 4

Camera Apple iPhone 5 Samsung EK-GC101 Nok

Apple iPhone 5 96 2
Samsung EK-GC101 1 95
Nokia 800-Lumia 0 0
Zopo ZP979 0 0
LG P760 0 2
Sony Ericsson ST25A 0 0
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5.5 Experiment 5

The parameters chosen for this experiment are: crop centre 512 ×
512, variance estimation adaptative and zero-meaning. That is, the
same parameters as in Experiment 1, except that in this experiment
the crop size is reduced. One of the aims of this experiment and
the following three is to check the influence of the crop sizes in
the results with different parameters.

The confusion table from six cameras is shown in Table 8. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 89.33%. As expected, the average
accuracy rate is down considerably (by 7%) relative to Experiment
1, because the amount of information used to obtain the image
features is considerably less.

5.6 Experiment 6

The parameters chosen for this experiment are: crop centre 512 ×
512, variance estimation adaptative and no zero-meaning. That is,
the same parameters as in Experiment 5, except that in this
experiment zero-meaning does not apply. This experiment has
among others aims seeing the influence of zero-meaning in small
crops using adaptive variance estimation.

The confusion table from six cameras is shown in Table 9. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 93.17%. As expected, the average
ia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

2 0 2 0
2 0 6 0
86 0 2 12
2 0 79 0
1 0 93 4
4 0 2 94

ia 800-Lumia Zopo ZP979 LG P760 Sony EricssonST25A

0 0 2 0
0 3 1 0

100 0 0 0
2 98 0 0
0 0 99 0
1 0 0 100
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Table 9 Experiment 6

Camera Apple iPhone 5 Samsung EK-GC101 Nokia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

Apple iPhone 5 94 2 3 0 1 0
Samsung EK-GC101 6 91 1 1 1 0
Nokia 800-Lumia 0 0 93 0 0 7
Zopo ZP979 0 5 2 92 1 0
LG P760 2 0 0 0 95 3
Sony Ericsson ST25A 0 0 4 0 2 94

Table 10 Experiment 7

Camera Apple iPhone 5 Samsung EK-GC101 Nokia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

Apple iPhone 5 95 0 2 0 3 0
Samsung EK-GC101 5 89 0 3 3 0
Nokia 800-Lumia 0 0 85 0 1 14
Zopo ZP979 0 1 2 97 0 0
LG P760 2 0 2 0 93 3
Sony Ericsson ST25A 0 0 4 0 0 96

Table 11 Experiment 8

Camera Apple iPhone 5 Samsung EK-GC101 Nokia 800-Lumia Zopo ZP979 LG P760 Sony Ericsson ST25A

Apple iPhone 5 95 0 2 0 3 0
Samsung EK-GC101 5 89 0 3 3 0
Nokia 800-Lumia 0 0 85 0 1 14
Zopo ZP979 0 1 2 97 0 0
LG P760 2 0 2 0 93 3
Sony Ericsson ST25A 0 0 4 0 0 96
accuracy rate is down (4.83%) relative to Experiment 2, because of
the reduction of crop size. In the case of smaller crop not using
zero-meaning, the success rate increases compared with the
previous experiment (3.84%), although this increase is not a
significant improvement.
5.7 Experiment 7

The parameters chosen for this experiment are: crop centre 512 ×
512, non-adaptive variance estimation and zero-meaning. That is,
the same parameters as in Experiment 5, except that in this
experiment we apply non-adaptive variance estimation. One of the
aims of this experiment is to see the influence of the adaptive
variance estimation using small crops.

The confusion table from six cameras is shown in Table 10. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 92.50%. As expected, the average
accuracy rate is down (5%) relative to Experiment 3, because of
the reduction of crop size. Relative to the comparison with
experiment 5, it can be seen that the results are better with
Table 12 Confusion matrix of Experiment 9

Camera A1 A2 A3 A4 B1 SE1 SE

A1 90 0 0 2 0 0 0
A2 0 91 0 3 0 0 0
A3 0 0 98 0 0 0 0
A4 0 0 1 88 0 0 0
B1 0 0 0 2 73 0 0
SE1 7 0 0 0 0 80 0
SE2 1 0 0 2 2 0 8
S1 4 5 0 4 0 0 1
S2 0 0 0 0 0 0 0
S3 0 0 1 0 0 0 8
L1 0 0 0 9 0 6 0
H1 2 0 0 0 0 11 0
H2 0 6 0 0 0 0 0
N1 0 0 0 0 2 0 0
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non-adaptive variance (3.17%). Moreover, relative to the
comparison with Experiment 6 which also uses adaptive variance
estimation the impact in results is minimal.
5.8 Experiment 8

The parameters chosen for this experiment are: crop centre 512 ×
512, variance estimation non-adaptive and no zero-meaning. That
is, the same parameters as in Experiment 4, except that in this
experiment the crop size is reduced. One of the aims of this
experiment is to see the influence of zero-meaning using small
crops and adaptive variance estimation.

The confusion table from six cameras is shown in Table 11. The
average accuracy rate for correctly identifying camera make and
model for this experiment was 91.67%. As expected, the average
accuracy rate is down (6.16%) relative to Experiment 4, because of
the reduction of crop size. It is confirmed that the results obtained
in this experiment and the results obtained between the comparison
of the results of Experiments 6 and 8 show that the use of adaptive
variance estimation does not significantly improve the results.
1 S1 S1 S3 L1 H1 H2 N1

0 7 0 1 0 0 0
3 0 0 0 1 2 0
2 0 0 0 0 0 0
0 0 0 3 6 0 2
0 4 0 0 1 0 20
0 0 0 1 12 0 0

6 1 2 5 1 0 0 0
83 0 0 1 0 2 0
0 100 0 0 0 0 0
0 0 85 0 1 0 5
0 2 0 70 13 0 0
0 1 0 1 85 0 0
0 0 0 0 0 94 0
0 0 0 0 0 0 98
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5.9 Experiment 9

To evaluate the scalability of the method to a larger number of
classes, a group of 14 mobile device digital cameras from seven
different manufacturers was used. The average classification rate
dropped to 87.21% as shown in the confusion matrix of Table 12
indicating a small loss in performance when the number of classes
(cameras) is increased.

Remember that in all of this work, 100 images were employed for
training and 100 for testing.
6 Conclusions

According to the structure and operation of mobile device digital
cameras, the most appropriate techniques for forensic analysis are
those based on sensor noise and wavelet transforms. In this paper,
an algorithm was proposed for identifying the mobile source
combining techniques based on sensor fingerprint and the wavelet
transforms. The algorithm is mainly composed of two phases: the
first is dedicated to extracting the sensor fingerprint, and the
second to extracting features from this fingerprint that will serve as
input to the SVM used as classification method.

A method for source camera identification, based on wavelet
features of image noise residuals and SVM classification, was
tested on photographs acquired from a range of smartphones.
Eight experiments have been made with the same pictures, for the
purpose of analysing the different configuration parameters and
improvements in the used algorithm, which allow it to adapt to
different situations. First, in general, note that the best results
obtained have an average accuracy rate of 98% and the worst of
89.33%. This wide range implies that the possibility exists to set
parameters to improve the algorithm for each situation.

Then, the general conclusions are presented after the previous
analysis of the experiments.

The first expected conclusion is that regardless of the parameters
used in the algorithm, we obtain worse results as the used crop is
smaller. There is not a case in the experiments that the average
accuracy rate with a small crop exceeds the worst results with a
big crop for the same number of devices. Obviously, the
processing in terms of execution time increases as higher crop is
used.

The second general conclusion is that there are not clearly defined
configuration parameters for the algorithm for each crop size that
allows the best results to be obtained. Any obtained combination
of parameters has similar results, although it is noteworthy that
there are parameters that optimise the average accuracy rate to a
greater extent. It is the responsibility of the forensic analysts to
achieve greater results optimisation at the expense of a longer
execution time or otherwise. Moreover, it can be concluded that
none of the parameters used are superfluous because none of them
independently weaken the results for all possible combinations.

A third general conclusion is that for both large and small crops
there is a common configuration that gets the best results: adaptive
variance estimation and no zero-meaning.

Focusing on the case of each crop size, the conclusions are shown
below.

For the case of large crops (1024 × 1024) it can be concluded that
the use of different configuration parameters does not clearly
generate better results compared with the other options (the largest
difference between all the results is 1.67%). The best option is to
use adaptive variance estimation and not zero-meaning and the
second best option does not use zero-meaning either. Hence, we
can conclude that for large crops the zero-meaning does not
provide any improvement and it makes the results slightly worse.
Regarding the type of variance to use, it can be concluded that
taking into account the processing time using adaptive variance it
takes a long time. For large crops and a large number of images to
be analysed it is better not to use it (in the worst case the results
worsen by 0.5%), unless there are not time restrictions or we have
high throughput.
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In the case of small crops (512 × 512), there are no significant
differences with respect to the use of different configuration
parameters. The worst case is the one that uses the adaptive
variance estimation and zero-meaning; in small crops we conclude
that it is a bad choice because it gets far worse results than the
other options (2.34% in the best case).

Concerning the use of various types of variance estimation and
zero-meaning conclusions are similar to the case of large crops.

To evaluate the scalability of the approach, we repeated the
experiment using 14 models from seven manufactures and
achieved an average success rate of 87.21%.

Depending on the number and the type of images that have to be
analysed and maximising the success rate depending on the desire
processing time, the forensic analyst has the possibility of setting
certain parameters in the algorithm of identifying the source
acquisition. This will allow the analyst to obtain results closer to
their needs and processing constraints.

Our results, tentatively, suggest that the method is applicable to
datasets containing images from a large number of different
cameras and therefore the method promises potential uses for
digital forensics and data mining applications.
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